Get instant quote

What are the key design elements for 3D printing?

Are you new to designing parts for 3D print manufacturing or need a refresher on essential design elements? This article provides the key design elements for creating digital models for 3D printing, no matter the additive manufacturing process.

Key design considerations for 3D Printing

Every 3D printing technology comes with a distinct set of capabilities and its own design freedoms and restrictions. Whether you are a seasoned engineer who’s well-versed in designing for 3D printing or you are new to the field, it’s always a good idea to go over the most essential factors that make or break a design. 

This article covers the key design considerations that apply to 3D printing in general, regardless of the printer you choose for manufacturing your custom parts. 

Quick design reference for 3D printing

Check out this handy infographic for quick access to every essential design element you may need while creating digital models to 3D print.


How to design parts for 3D printing

Each 3D printing process has its own design advantages as well as some limitations. Let’s break down the key design considerations that apply to every 3D printing technology to keep in mind when designing your next custom parts. 

Designing 3D models with overhangs

All 3D printing processes build parts layer-by-layer. New layers can’t be deposited onto thin air, so every layer must be printed over some underlining material. 

Overhangs are areas of a model that are either partially supported by the layer below or not supported at all. There is a limit on the angle every printer can produce without the need for support material. For example, if you’re printing with an FDM and SLA machine, this angle is approximately 45 degrees .

We recommend limiting your model’s overhangs, as layers printed over support structures usually come out with a rougher surface finish. 

3D printed part that shows the effect of increasing overhang angle on print quality.
This image shows the effect of increasing angle on overhang quality for FDM printing

Wall thickness for 3D printing

The second thing to keep in mind when designing a part to be 3D printed is wall thickness. Every 3D printing process has its own level of precision. FDM, for instance, is the least accurate, while SLA has the tightest tolerances. In terms of part stability, every 3D printing process has a lower limit regarding wall thickness and feature size.

For example, imagine you are an engineer designing a new generation of hang gliders. You’ve chosen to 3D print a scaled-down version of the product to test its efficacy. 3D modeling programs allow you to model the sailcloth of the wing, for instance,  but you then encounter problems when you would try to 3D print it. This is because the model’s wall thickness is less than the minimum required for successful printing.

It’s essential to make sure that your 3D designs have walls that meet the minimum required thickness for the printing process you choose. All 3D printers can successfully print components with wall thicknesses greater than 0.8 mm.

What is warping and how can you avoid it?

Something that is often easily overlooked while designing a 3D model is the fact that the materials used for 3D printing undertake physical change: they are melted, sintered or scanned with a laser and solidified. The heating and cooling of material can cause the parts to warp while printing.

Large, flat surfaces can be especially prone to warping. Warping can typically be avoided by using correct machine calibration and having adequate surface adhesion between your part and the print bed. A good practice is to avoid large flat surfaces and add rounded corners to your 3D models.


Designing the right level of detail

When you are creating a 3D model with intricate details, it is important to keep in mind the minimum feature size each 3D printing process can handle. The minimum level of detail is connected to the capabilities and mechanics of each 3D printing process and to the selected layer height .

The process and materials used will have an impact on the speed and cost of your print, so determining whether smaller details are critical to your model is an important design decision.


Using digital tools to design physical components

The most important thing to remember while designing for 3D printing is the fact that your digital design will become a physical object. In the digital design environment, there are no laws of physics to adhere to, such as gravity.

Anything can be "drawn" in 3D on a digital canvas, but not everything can be 3D printed. Knowing the key factors that go into designing 3D models will ensure that you produce digital designs that can be successfully printed.



Want to learn the key design elements for every 3D printing technology?

Design parts for FDM Design parts for SLA Design parts for SLS


Frequently asked questions

What’s the best CAD software for 3D printing designs?

There is a wide range of CAD programs available for designing 3D models. The most well-known of these (and arguably the best for most applications)  is Autodesks AutoCAD, first released for personal computers in 1982. Others include Fusion360, TinkerCAD and Solidworks. For a more in-depth exploration of all the major CAD programs, check out our article on design software.

Do you need additional software for 3D printing with Hubs?

You don’t need to install any additional software apart from CAD to start producing custom parts with Hubs. Our manufacturing partners are equipped with the best slicing software and a wide variety of machines for all your custom part requirements.


Should you avoid overhangs in my 3D models?

We recommend avoiding overhangs when possible by designing models to be 3D printed. Try not to design your parts with angles over 45 degrees.


What’s the minimal wall thickness for 3D printed parts?

All 3D printers used within the Hubs manufacturing network can print parts with wall thicknesses of 0.8 mm and over.


How do you keep your parts from warping?

To ensure that your custom parts don’t warp, we recommend avoiding large flat surfaces and using rounded corners in your designs.


How do you select the right 3D printer for my design?

It can be quite challenging to choose the right 3D printing technology for your specific applications. FDM is optimal for rapid prototyping and SLS and MJF tend to be better for larger production runs of complex parts, for instance. To help you select the best 3D printing process, we produced this handy guide.

 

More resources for engineers

Injection Molding SPI surface finishes

Why is draft angle design essential for injection molding?

Why is it important to design draft angles for injection molding custom parts? This article covers why draft angles are essential and how to design them better to get the most out of your injection molding designs.

Read article
How to design parts for Injection Molding

How to design parts for injection molding

A complete guide to Injection Molding with basic & advanced design tips, including design guidelines for snap-fits, living hinges, undercuts and surface finishes.

Read article
How to design parts for Binder Jetting 3D printing

How to design parts for binder jetting 3D printing

A comprehensive guide on designing parts for Binder Jetting, covering the printing process, design specifications and material options.

Read article
How to design parts for Material Jetting 3D Printing

How to design parts for material jetting 3D printing

This article explains how to design Material Jetting 3D printed parts including technical design specifications, materials, limitations and an introduction into the post-processing options available.

Read article
How to design parts for Metal 3D printing

How to design parts for metal 3D printing

A comprehensive guide for metal 3D printing covering the printing process, design specifications, material options and technology limitations.

Read article
How to Design Living Hinges for 3D Printing

How to design living hinges for 3D printing

This article discusses the advantages of living hinges and present-day design rules and material recommendations when using 3D printing to produce living hinges.

Read article
How to design parts for SLS 3D Printing

How to design parts for SLS 3D printing

This article discusses how to design SLS 3D printed parts including technical design specifications, materials, limitations and an introduction into the post-processing options available.

Read article
Selecting the optimal shell and infill parameters for FDM 3D Printing

Selecting the optimal shell and infill parameters for FDM 3D printing

Shell and infill properties impact the performance and cost of FDM 3D printing. Learn how to optimize these features for your 3D printed part

Read article
How does part orientation affect a 3D Print?

How does part orientation affect a 3D print?

This article discusses the impact part orientation has on the accuracy, strength, speed and surface finish of 3D printed parts.

Read article
The impact of layer height on a 3D Print

The impact of layer height on a 3D print

Learn about the importance of layer height and how it affects the quality, appearance and strength of 3D printed parts

Read article
3D Printing geometry restrictions

3D printing geometry restrictions

Learn about how large a 3D print can be along with how element thickness, watertightness, and curved surfaces affect the quality of a print.

Read article
How to design parts for SLA 3D Printing

How to design parts for SLA 3D printing

A comprehensive guide for 3D printing with SLA, covering the printing process, design specifications, material options and technology limitations.

Read article
Injection Molding SPI surface finishes

Why is draft angle design essential for injection molding?

Why is it important to design draft angles for injection molding custom parts? This article covers why draft angles are essential and how to design them better to get the most out of your injection molding designs.

Read article
How to design parts for Injection Molding

How to design parts for injection molding

A complete guide to Injection Molding with basic & advanced design tips, including design guidelines for snap-fits, living hinges, undercuts and surface finishes.

Read article
How to design parts for Binder Jetting 3D printing

How to design parts for binder jetting 3D printing

A comprehensive guide on designing parts for Binder Jetting, covering the printing process, design specifications and material options.

Read article
How to design parts for Material Jetting 3D Printing

How to design parts for material jetting 3D printing

This article explains how to design Material Jetting 3D printed parts including technical design specifications, materials, limitations and an introduction into the post-processing options available.

Read article
How to design parts for Metal 3D printing

How to design parts for metal 3D printing

A comprehensive guide for metal 3D printing covering the printing process, design specifications, material options and technology limitations.

Read article
How to Design Living Hinges for 3D Printing

How to design living hinges for 3D printing

This article discusses the advantages of living hinges and present-day design rules and material recommendations when using 3D printing to produce living hinges.

Read article
How to design parts for SLS 3D Printing

How to design parts for SLS 3D printing

This article discusses how to design SLS 3D printed parts including technical design specifications, materials, limitations and an introduction into the post-processing options available.

Read article
Selecting the optimal shell and infill parameters for FDM 3D Printing

Selecting the optimal shell and infill parameters for FDM 3D printing

Shell and infill properties impact the performance and cost of FDM 3D printing. Learn how to optimize these features for your 3D printed part

Read article
How does part orientation affect a 3D Print?

How does part orientation affect a 3D print?

This article discusses the impact part orientation has on the accuracy, strength, speed and surface finish of 3D printed parts.

Read article
The impact of layer height on a 3D Print

The impact of layer height on a 3D print

Learn about the importance of layer height and how it affects the quality, appearance and strength of 3D printed parts

Read article
3D Printing geometry restrictions

3D printing geometry restrictions

Learn about how large a 3D print can be along with how element thickness, watertightness, and curved surfaces affect the quality of a print.

Read article
How to design parts for SLA 3D Printing

How to design parts for SLA 3D printing

A comprehensive guide for 3D printing with SLA, covering the printing process, design specifications, material options and technology limitations.

Read article

Show more

Show less

Design ready? Upload your parts for a free, instant quote

Get an instant quote