Get instant quote

FDM 3D printing materials compared

Compare the main FDM 3D printing plastics - PLA, ABS, PET, Nylon, TPU (Flexible) and PC - by material properties and find the best option for your application.

Written by 3d Matter

FDM 3D Printing materials compared

Introduction

Choosing the right type of material to print a given object is becoming increasingly difficult, as the 3D Printing market sees the regular emergence of radically new materials. In FDM 3D Printing , PLA and ABS have historically been the two main polymers used, but their initial dominance was mostly fortuitous, so there should not be any major roadblocks for other polymers to play a key role in the future of FDM.

We are now seeing new products become more popular, both pure polymers and composites. In this study, we focus on the main pure polymers that exist in the market today: PLA, ABS, PET, Nylon, TPU (Flexible) and PC. We sum up the key differences between their properties in snapshot profiles so that users can make a quick decision about the best polymer to use for their application.

Methodology

Materials are usually graded along 3 categories: mechanical performance, visual quality, and process. In this case, we further break down these categories to paint a clearer picture of the polymer’s properties. The choice of material really depends on what the user wants to print, so we listed the key decision criteria needed to choose a material (other than cost and speed):

A spider web graph showing the material properties that will be compared
  • Ease of printing: How easy it is to print a material: bed adhesion, max printing speed, frequency of failed prints, flow accuracy, ease to feed into the printer etc.
  • Visual quality: How good the finished object looks. More info on how we test it here.
  • Max stress: Maximum stress the object can undergo before breaking when slowly pulling on it.
  • Elongation at break: Maximum length the object has been stretched before breaking.
  • Impact resistance: Energy needed to break an object with a sudden impact.
  • Layer adhesion (isotropy): How good the adhesion between layers of material is. It is linked to “isotropy” (=uniformity in all directions): the better the layer adhesion, the more isotropic the object will be.
  • Heat resistance: Max temperature the object can sustain before softening and deforming.

We also provide additional information that is not captured in the diagram, for one of two reasons:

  • They are neither “good” nor “bad” in essence; they are just properties that are suitable for some applications and not for others, such as rigidity.
  • We don’t have a good quantitative assessment of it, but we know it is an important factor, such as humidity resistance or toxicity.

Results

Each material has been ranked along the following criteria on a 1 (low) to 5 (high) scale. These are relative grades for the FDM process - they would look quite different if other manufacturing technologies were taken into account. Using the data from Optimatter, the polymers have been ranked along the different criteria considered:

Research results for all six polymers displayed in one graph.

Get your parts printed in these materials:

PLA ABS PET Nylon TPU

PLA

PLA is the easiest polymer to print and provides good visual quality. It is very rigid and actually quite strong, but is very brittle.

The material profile of PLA
Pros Cons
Biosourced, biodegradable Low humidity resistance
Odorless Can't be glued easily
Can be post-processed with sanding paper and painted with acrylics
Good UV resistance

ABS

ABS is usually picked over PLA when higher temperature resistance and higher toughness is required.

The material profile of ABS
Pros Cons
Can be post-processed with acetone vapors for a glossy finish UV sensitive
Can be post-processed with sanding paper and painted with acrylics Odor when printing
Acetone can also be used as strong glue Potentially high fume emissions
Good abrasion resistance

PET

PET is a slightly softer polymer that is well rounded and possesses interesting additional properties with few major drawbacks.

The material profile of PET
Pros Cons
Can come in contact with foods Heavier than PLA and ABS
High humidity resistance
High chemical resistance
Recyclable
Good abrasion resitance
Can be post-processes with sanding paper and painted with acrylics

Nylon

Nylon possesses great mechanical properties, and in particular, the best impact resistance for a non-flexible filament. Layer adhesion can be an issue, however.

The material profile of Nylon
Pros Cons
Good chemical resistance Absorbs moisture
High strength Potentially high fume emissions

TPU

TPU is mostly used for flexible applications, but its very high impact resistance can open for other applications.

The material profile of TPU
Pros Cons
Good abrasion resistance Difficult to post process
Good resistance to oil and grease Can't be glued easily

PC

PC is the strongest material of all, and can be an interesting alternative to ABS as the properties are quite similar.

The material profile of PC
Pros Cons
Can be sterilized UV sensitive
Easy to post-process (sanding)

Conclusion

Choosing the right polymer is critical to get the right properties for a 3D printed part, especially if the part has a functional use. This article will help users find the right material depending on the properties they need. However, material suppliers also often provide blends or add additives to modify the properties of the pure polymer (e.g. adding carbon fiber to make the material stiffer). We are not addressing these more complex formulations in this article, but you can find data on some of these products in our optimization tool at OptiMatter.

Disclaimer

  • The grades given in this article are for an average polymer representing the general chemistry, but the performance will vary depending on the actual product or supplier the user buys from.
  • All the data underlying our grades in this study was measured by 3D Matter, with the exception of Heat Resistance, for which we used the glass temperature given by multiple filament suppliers.
  • For the sections called “Additional considerations”, we are using a combination of third-party assessments and our own observations.
  • The Nylon type we discuss in this article is Nylon 6, not Nylon 11 or 12.
  • Visual quality is tested without any significant post-processing. There are ways to smoothen the prints and improve the visual quality of a given polymer significantly (e.g. using acetone vapor on ABS).
  • The toxicity of 3D printing polymers is still not very well understood and is a factor that might play a bigger role in the future. We are basing our comments regarding toxicity on one study by Azimi et al. [1]

[1] Azimi et al, Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments, Environmental Science & Technology, 2016

A big thank you to 3D Matter for sharing this material research with our community.

More resources for engineers

A custom designed part printed on MJF printer.

What is multi-jet fusion?

In this introduction to Multi Jet Fusion (MJF), you'll find out all about the tech and applications of this bulk polymer additive workhorse.

Read article
SLA 3D Printing materials compared

SLA 3D printing materials compared

Compare the main SLA 3D printing resins - standard, tough, durable, heat resistant, rubber-like, dental and castable - by material properties and find the best option for your application.

Read article
Introduction to Binder Jetting 3D printing

Introduction to binder jetting 3D printing

In this introduction to Binder Jetting 3D printing, we cover the basic principles of the technology. After reading this article you will understand the fundamental mechanics of the Binder Jetting process and how these relate to its benefits and limitations.

Read article
Selecting the right 3D printing process

Selecting the right 3D printing process

Decision making tools and generalized guidelines to aid you select the right 3D printing process for your application.

Read article
Introduction to Metal 3D printing

Introduction to metal 3D printing

In this introduction to metal 3D printing, we cover the basic principles of SLM and DMLS. Learn the fundamental mechanics of SLM and DMLS and how these relate to the key benefits and limitations of 3D printing.

Read article
HP MJF vs. SLS: A 3D Printing Technology Comparison

HP MJF vs. SLS: A 3D printing technology comparison

In this article we compare critically HP's Multi Jet Fusion (MJF) with Selective Laser Sintering (SLS) in terms of accuracy, materials, cost and lead time. We cover the current state-of-the-art to help you choose the right technology for your application.

Read article
Introduction to Material Jetting 3D Printing

Introduction to material jetting 3D printing

In this introduction to Material Jetting 3D printing, we cover the basic principles of the technology. After reading this article you will understand the fundamental mechanics of the Material Jetting process and how these relate to its benefits and limitations.

Read article
3D printed Injection Molds: Materials Compared

3D printed injection molds: Materials compared

We compare critically two industrial 3D printing materials used for low-run injection mold manufacturing.

Read article
Introduction to SLS 3D Printing

What is SLS 3D printing?

Learn about the basic principles of selective laser sintering, also known as SLS 3D printing. Discover how SLS 3D printing works, the advantages of SLS techniques for rapid prototyping and low-production runs, and the various materials and options available that will suit your part or project.

Read article
Introduction to SLA 3D Printing

What is SLA 3D printing?

Get to know the basics of stereolithography, also known as SLA 3D printing. Find out why the original 3D printing technique is still so popular and cost-effective, learn about how SLA printing works and its parameters, and discover which materials and options will best suit your 3D-printed part or project.

Read article
Online rapid prototyping service

What is FDM 3D printing?

Get to know the basics of Fused Deposition Modeling, also known as FDM 3D printing. Learn why this 3D printing technique is so affordable, and why it is an excellent choice for quick, low-cost prototyping. Delve into FDM materials and the advantages and disadvantages for designers and engineers alike. 

Read article
Industrial SLA/DLP vs. Desktop SLA/DLP

Industrial SLA/DLP vs. desktop SLA/DLP

SLA/DLP technology is used by both low-cost desktop 3D printers as well as high-end industrial 3D printers. This article will help you select the right type of machine for your application.

Read article
A custom designed part printed on MJF printer.

What is multi-jet fusion?

In this introduction to Multi Jet Fusion (MJF), you'll find out all about the tech and applications of this bulk polymer additive workhorse.

Read article
SLA 3D Printing materials compared

SLA 3D printing materials compared

Compare the main SLA 3D printing resins - standard, tough, durable, heat resistant, rubber-like, dental and castable - by material properties and find the best option for your application.

Read article
Introduction to Binder Jetting 3D printing

Introduction to binder jetting 3D printing

In this introduction to Binder Jetting 3D printing, we cover the basic principles of the technology. After reading this article you will understand the fundamental mechanics of the Binder Jetting process and how these relate to its benefits and limitations.

Read article
Selecting the right 3D printing process

Selecting the right 3D printing process

Decision making tools and generalized guidelines to aid you select the right 3D printing process for your application.

Read article
Introduction to Metal 3D printing

Introduction to metal 3D printing

In this introduction to metal 3D printing, we cover the basic principles of SLM and DMLS. Learn the fundamental mechanics of SLM and DMLS and how these relate to the key benefits and limitations of 3D printing.

Read article
HP MJF vs. SLS: A 3D Printing Technology Comparison

HP MJF vs. SLS: A 3D printing technology comparison

In this article we compare critically HP's Multi Jet Fusion (MJF) with Selective Laser Sintering (SLS) in terms of accuracy, materials, cost and lead time. We cover the current state-of-the-art to help you choose the right technology for your application.

Read article
Introduction to Material Jetting 3D Printing

Introduction to material jetting 3D printing

In this introduction to Material Jetting 3D printing, we cover the basic principles of the technology. After reading this article you will understand the fundamental mechanics of the Material Jetting process and how these relate to its benefits and limitations.

Read article
3D printed Injection Molds: Materials Compared

3D printed injection molds: Materials compared

We compare critically two industrial 3D printing materials used for low-run injection mold manufacturing.

Read article
Introduction to SLS 3D Printing

What is SLS 3D printing?

Learn about the basic principles of selective laser sintering, also known as SLS 3D printing. Discover how SLS 3D printing works, the advantages of SLS techniques for rapid prototyping and low-production runs, and the various materials and options available that will suit your part or project.

Read article
Introduction to SLA 3D Printing

What is SLA 3D printing?

Get to know the basics of stereolithography, also known as SLA 3D printing. Find out why the original 3D printing technique is still so popular and cost-effective, learn about how SLA printing works and its parameters, and discover which materials and options will best suit your 3D-printed part or project.

Read article
Online rapid prototyping service

What is FDM 3D printing?

Get to know the basics of Fused Deposition Modeling, also known as FDM 3D printing. Learn why this 3D printing technique is so affordable, and why it is an excellent choice for quick, low-cost prototyping. Delve into FDM materials and the advantages and disadvantages for designers and engineers alike. 

Read article
Industrial SLA/DLP vs. Desktop SLA/DLP

Industrial SLA/DLP vs. desktop SLA/DLP

SLA/DLP technology is used by both low-cost desktop 3D printers as well as high-end industrial 3D printers. This article will help you select the right type of machine for your application.

Read article

Show more

Show less

Design ready? Upload your parts for a free, instant quote

Get an instant quote